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Abstract

We prove upper and lower estimates on the Hausdorff dimension of sets of in-
finite complex continued fractions with finitely many prescribed Gaussian integers.
Especially we will conclude that the dimension of theses sets is not zero or two and
there are such sets with dimension greater than one and smaller than one.
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1 Introduction

Continued fractions were studied in number theory since the work of Wallis in the 17th

century, see [7]. The first dimensional theoretical perspective on infinite real continued

fractions can be found in the work of Jarnik [12], who introduced upper and lower es-

timates on the Hausdorff dimension of sets of continued fractions with bounded digits.

The problem of calculating the dimension of these sets has been addressed by several

authors [6, 1, 2, 8, 9]. In a resent work Jenkinson and Pollicott provide a fast algorithm

to approximate this dimension [13].

Dimension theoretical aspects of infinite complex continued fractions were studied by

Gardner, Mauldin and Urbanski [5, 16]. They proofed that the set of complex continued

fractions with arbitrary Gaussian integers from N + Zi has Hausdorff dimension greater

than one and smaller than two.

We consider here infinite complex continued fractions and ask for the Hausdorff dimen-

sion of the set of continued fractions with digits coming from a finite set A ⊂ N[i]. Using

the Moran formula from the theory of iterated function systems [15] we are able to give

upper and lower estimates on the Hausdorff dimension of these sets, see theorem 2.1. We

will show that the dimension of the sets is not zero or two and there are such sets with

dimension grater than one and smaller than one, see corollary 2.1 and 2.2. In addition

we provide explicit estimates in selected examples.



2 Notations, Results and Examples

Given a sequence zn ∈ C for n ∈ N0 of Gaussian integers we define the infinite complex

continued fraction by

[z0; z1, z2, . . .] := z0 +
1

1 + z1
1+z2...

∈ C.

It is well known that every complex number can be represented as an infinite continued

fractions of Gaussian integers using the Hurwitz algorithm [10]. Now fix a finite set

A = {aj + bji | aj, bj ∈ N, j = 1, . . . ,m} ⊂ N[i].

We consider the set of all infinite continued fractions having fractional entries coming

from A,

C(A) := {[0; z1, z2, . . .] | zn ∈ A, n ∈ N} ⊂ C.

Obviously the set C(A) is uncountable and it is a null set with respect to the two-dimension

Lebesgue measure (this is immediate from corollary 2.1 below). Thus we are interested

in the Hausdorff dimension of this set. Recall [3, 17] that the d-dimensional Hausdorff

measure of a set C ⊆ C is

Hd(C) = lim
ε7−→0

inf{
∞∑
i=1

diameter(Ci)
d|C ⊆

∞⋃
i=1

Ci, diameter(Ci) < ε}.

The Hausdorff dimension of C is given by

dimH C = sup{d|Hd(C) =∞} = inf{d|Hd(C) = 0}.

Now we are able to sate our main result on dimH C(A).

Theorem 2.1 For a finite set A ⊂ N[i] let D, d ∈ R+ be the unique real numbers fulfilling∑
a+bi∈A

(
1

a2 + b2
)D = 1

∑
a+bi∈A

(
1

a2 + b2 + (1 +
√

2) max{a, b}+ 1
)d = 1.

We have

d ≤ dimH C(A) ≤ D.

With an additional argument this theorem as the following corollary:

Corollary 2.1 For all finite sets A ⊂ N[i] we have dimH C(A) < 2; on the other hand

dimH C(A) > 0 if A has more than one element.
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Proof. ∑
a+bi∈A

(
1

a2 + b2
)2 ≤

∞∑
a=1

∞∑
b=1

(
1

a2 + b2
)2 ≤ 1

4
+
∞∑
k=2

(2k − 1)(
1

k2 + 1
)2

≤ −3

4
+
∞∑
k=1

2k − 1

k4
= −3/4 + 2ζ(3)− ζ(4) < 1.

Hence D < 2. If A has more than one element we have∑
a+bi∈A

(
1

a2 + b2 + (1 +
√

2) max{a, b}+ 1
)0 > 1,

hence d > 0. The result now follows from our theorem. �

By a similar argument we get the second corollary.

Corollary 2.2 There exists finite sets A ⊂ N[i] with dimH C(A) > 1 and there exists

such sets with dimH C(A) < 1.

Proof.
∞∑
a=1

∞∑
b=1

(
1

a2 + b2 + (1 +
√

2) max{a, b}+ 1
) ≥

∞∑
k=1

2k − 1

2k2 + (1 +
√

2)k + 1

≥
∞∑
k=1

(
2

(4 +
√

2)k
− 1

2k2
) =∞

Hence for a suitable choice of A we have∑
a+bi∈A

1

a2 + b2 + (1 +
√

2) max{a, b}+ 1
> 1.

For this set A we have d > 1. On the other hand consider A = {1 + i, 2 + i}. We have∑
a+bi∈A

1

a2 + b2
< 1,

hence D < 1. The result again follows from our theorem. �

We remark that it is possible deduce the last corollaries from theorem 1 and theorem

2 of [5] by a few additional arguments. To obtain these results from our main theorem

seems to us more transparent.

Our last corollary gives the obvious explicit upper and lower bounds following from the-

orem 2.1:

Corollary 2.3 For a finite set A ⊂ N[i] with cardinality |A| we have,

log(|A|)
maxA log(a2 + b2)

≤ dimH C(A) ≤ log(|A|)
minA log(a2 + b2 + (1 +

√
2) max{a, b}+ 1)

.
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The estimates in this corollary are of course very crude. At the end of this section we

will apply theorem 2.1 directly to a few examples. Let A = {2 + 2i, 3 + 2i, 3 + 3i}. The

numbers D and d are given by

(
1

8
)D + (

1

13
)D + (

1

18
)D = 1 and (

1

11 + 2
√

2
)d + (

1

17 + 3
√

2
)d + (

1

22 + 3
√

2
)d = 1,

which implies 0.36 < dimH C(A) < 0.44, which is an acceptable estimate. If we consider

values with small modulus A = {1 + i, 2 + i, 1 + 2i} we get

(
1

2
)D + 2(

1

5
)D = 1 and (

1

4 +
√

2
)d + 2(

1

8 + 2
√

2
)d = 1.

This gives 0.49 < dimH C(A) < 0.91, which is not very good. Let us consider one more

example A = {3 + i, 2 + 4i}. We get

(
1

10
)D + (

1

20
)D = 1 and (

1

14 + 3
√

2
)d + (

1

25 + 4
√

2
)d = 1

and thus 0.21 < dimH C(A) < 0.27. As a last example consider A = {a+ bi|a, b = 1 . . . 4}.
An elementary calculation shows that theorem 2.1 gives 1 < dimH C(A) < 1.33. We like to

remark here that it is possible to find an algorithm using thermodynamic formalism that

approximate the dimension of C(A). We could apply the recent approach of Jekinsion and

Policott [14] to infinite complex continues fractions. This approach has the disadvantage

that it is not possible to perform necessary calculations without using a computer, which

would change the field of our research to computational mathematics.

3 Proof of the result

For (a, b) ∈ N2 consider transformations Ta,b : C 7−→ C given by

Ta,b(z) =
1

z + a+ bi

We need three elementary lemmas concerning these transformations to apply the dimen-

sion theory of iterated functions systems to the set C(A). First we restrict the maps to

the open ball B1/2(1/2) = {z ∈ C | |z − 1/2| < 1/2}.

Lemma 3.1 For (a, b) ∈ N2 we have

Ta,b(B1/2(1/2)) ⊂ B1/2(1/2).

Proof. For I(z) = 1/z we have

I(Br(z)) = Br/(|z|2−r2)(
z̄

|z|2 − r2
),
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if |z| 6= r. Applying the translation with a+ bi we obtain

Ta,b(Br(z)) = Br/(|z+a+bi|2−r2)(
z + a+ bi

|z + a+ bi|2 − r2
)

if |z + a+ bi| 6= r. Especially we get

Ta,b(B1/2(1/2)) = B 1
2a+2a2+2b2

(
1/2 + a− bi
a+ a2 + b2

).

since |1/2 + a+ bi| > 1/2 for a, b > 0. We have to show the distance of the center of the

image to 1/2 plus the radius of the image is less or equal to 1/2. This means

|1/2 + a− bi
a+ a2 + b2

− 1

2
|+ 1

2a+ 2a2 + 2b2
≤ 1

2

⇔ |a2 + b2 − a− 1 + 2bi|2 ≤ (a2 + b2 + a− 1)2

⇔ (a2 + b2 − a− 1)2 + 4b2 ≤ (a2 + b2 + a− 1)2

⇔ 4a+ 4b2 ≤ 4(a2 + b2)a⇔ 1 ≤ a2,

which is obviously true for a a ∈ N. �

Next we show that the images of the open balls B1/2(1/2) under different Ta,b are disjoint.

Lemma 3.2 If (a1, b1) 6= (a2, b2) we have

Ta1,b1(B1/2(1/2)) ∩ Ta2,b2(B1/2(1/2)) = ∅.

Proof. We have to show that the distance of the balls at hand is bigger or equal to the

sum of there radii, this is

|1/2 + a1 − b1i
a1 + a2

1 + b21
− 1/2 + a2 − b2i

a2 + a2
2 + b22

| ≥ 1

2a1 + 2a2
1 + 2b21

+
1

2a2 + 2a2
2 + 2b22

.

With d1 = a1 + a2
1 + b21 and d2 = a2 + a2

2 + b22 we have to show

|1/2 + a1 − b1i
d1

− 1/2 + a2 − b2i
d2

| ≥ 1

2d1

+
1

2d2

⇔ |d2(1/2 + a1 − b1i)− d1(1/2 + a2 − b2i)|2 ≥ (d1/2 + d2/2)2

⇔ ((1/2 + a1)d2 − (1/2 + a2)d1)
2 + (b1d2 − b2d1)

2 ≥ (d1/2 + d2/2)2

⇔ d1d
2
2 − (1/2 + a1 + a2 + 2a1a2)d1d2 + d2d

2
1 − 2b1d2b2d1 ≥ d1d2/2

⇔ d1 + d2 − (1 + a1 + a2 + 2a1a2 + 2b1b2) ≥ 0

⇔ (a1 − a2)
2 + (b1 − b2)2 − 1 ≥ 0.

This is obviously true under our assumption. �

The last lemma contains estimates on the modulus of derivative of the maps on the

closed ball B̄1/2(1/2).
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Lemma 3.3 For (a, b) ∈ N2 we have

max{|T ′a,b(z)|z ∈ B̄1/2(1/2))} ≤ 1

a2 + b2
,

min{|T ′a,b(z)|z ∈ B̄1/2(1/2))} ≥ 1

a2 + b2 + (1 +
√

2) max{a, b}+ 1
.

Proof. For z ∈ B̄1/2(1/2) we have

T ′a,b(z) =
−1

(z + a+ bi)2
and hence |T ′a,b(x+ yi)| = 1

(x+ a)2 + (y + b)2
.

Now the first estimate is obvious. For the second part note that

max{(x+ a)2 + (y + b)2|z = x+ iy ∈ B̄1/2(1/2))}

= max{(x+ a)2 + (y + b)2|(x− 1/2)2 + y2 ≤ 1/4, x, y ∈ R}

= a2 + b2 + max{x+ 2xa+ 2yb|y2 ≤ x− x2, x ∈ [0, 1], y ∈ [−1/2, 1/2]}

≤ 1 + a2 + b2 + 2 max{xa+ yb|y2 ≤ x− x2, x ∈ [0, 1], y ∈ [−1/2, 1/2]}

≤ 1 + a2 + b2 + 2 max{a, b}max{x+ y|y2 ≤ x− x2, x ∈ [0, 1], y ∈ [−1/2, 1/2]}

≤ 1 + a2 + b2 + (1 +
√

2) max{a, b}

using Lagrange in the last estimate. This implies the result. �

Given a set finite A ⊂ N[i] consider the iterated function system (IFS) in the sense

of Hutchinson [11]:

(B̄1/2(1/2), {Ta,b|a+ bi ∈ A}).

By lemma 3.1 this IFS is well defined with attractor C(A); i.e.

C(A) =
⋃

a+bi∈A

Ta,b(C(A)).

By lemma 3.2 the IFS fulfills the open set condition, first introduced by Moran [15].

Moreover by lemma 3.3 we have

|z1 − z2|
a2 + b2 + (1 +

√
2) max{a, b}+ 1

≤ |Ta,b(z1)− Ta,b(z2)| ≤
|z1 − z2|
a2 + b2

for all z1, z2 ∈ B̄1/2(1/2) and all a + bi ∈ A. Now theorem 2.1 is a direct application of

theorem 8.8 of Falconer [4], a well know result in the dimension theory of IFS, which goes

back to Moran [15].
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