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b-adic representation

b-adic representation

o Consider the b-adic representation of a real numbers x € [0, 1]:

x=Y di(x)b”, di(x)€{0,1,...,b—1}.
i=1
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b-adic representation

b-adic representation

o Consider the b-adic representation of a real numbers x € [0, 1]:

X—Zd di(x) € {0,1,...,b—1}.

@ Choosing digits from A C {0,...,b — 1} we define

Db—adiC[A] = {X S [O, ].”d,'(X) € A}
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b-adic representation

b-adic representation

o Consider the b-adic representation of a real numbers x € [0, 1]:

X—Zd di(x) € {0,1,...,b—1}.

@ Choosing digits from A C {0,...,b — 1} we define

Db—adiC[A] = {X S [O, ].”d,'(X) € A}

o If 2 < |A| < |B| the set Dy_ic[A] is uncountable and
compact but of length zero and totally disconnected.
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b-adic representation

Hausdorff dimension
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b-adic representation

Hausdorff dimension

@ The d-dimension Hausdorff measure of B C R" is

H9(B) = Emoinf{; diam(G;)9|B C L_Jl Ci, diam(G) < €}.
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b-adic representation

Hausdorff dimension

@ The d-dimension Hausdorff measure of B C R" is

H9(B) = Emoinf{; diam(G;)9|B C L_Jl Ci, diam(G) < €}.

@ The is a natural generalization of the n-dimensional Lebesgue
measure to non-integer dimensions, £" = ¢,H".
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b-adic representation

Hausdorff dimension

@ The d-dimension Hausdorff measure of B C R" is

H9(B) = Emoinf{; diam(G;)9|B C L_Jl Ci, diam(G) < €}.

@ The is a natural generalization of the n-dimensional Lebesgue
measure to non-integer dimensions, £" = ¢,H".

@ The Hausdorff dimension is given by

dim B = inf{d > 0|%9(B) = 0} = sup{d > 0|9(B) = oo}
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b-adic representation

log | Al

dim Db—adiC[A] = Iog b

Neunh3userer Dimension theory of representations of numbers



b-adic representation

log |A|

dim Db—adiC[A] = Iogb

@ For the upper bound just cover the set by by |A|” intervals of
length b".
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b-adic representation

log | Al

dim Db—adiC[A] = Iog b

@ For the upper bound just cover the set by by |A|” intervals of
length b".

@ For the lower bound define a probability measure by
1(laya;...2,) = |A]7"

Jorg Neunhauserer Dimension theory of representations of numbers



b-adic representation

log | Al

dim Dp,_,qiclAl =

log b

@ For the upper bound just cover the set by by |A|” intervals of
length b".

@ For the lower bound define a probability measure by
M(Ialag...a,,) - ‘A‘in- We have

x €D : u(B(x)) < c roglAl/logb
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b-adic representation

log | Al

dim Db—adiC[A] = Iog b

@ For the upper bound just cover the set by by |A|” intervals of
length b".

@ For the lower bound define a probability measure by
M(Ialag...a,,) - ‘A‘in- We have

x €D : u(B(x)) < c roglAl/logb

By the mass distribution principle $'°8Al/loeb(D) > 1/c.
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b-adic representation

Prescribed frequencies in b-adic representation
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b-adic representation

Prescribed frequencies in b-adic representation

@ Let p = (pj) be a probability vector on {0,...b—1}. The
entropy of p is

b—1
H(p) =—>_ pjlogp;.
j=0
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b-adic representation

Prescribed frequencies in b-adic representation

@ Let p = (pj) be a probability vector on {0,...b—1}. The
entropy of p is

b—1
H(p) =—>_ pjlogp;.
j=0

e Consider the set of real numbers in [0, 1] with given frequency
of digits in the b-adic representation

{i=1,...n|di(x) = j}|

Fb-adic[p] = {X’ n|r|—>nc1>o = pj}‘
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b-adic representation

Prescribed frequencies in b-adic representation

@ Let p = (pj) be a probability vector on {0,...b—1}. The
entropy of p is

b—1
H(p) =—>_ pjlogp;.
j=0

e Consider the set of real numbers in [0, 1] with given frequency
of digits in the b-adic representation

{i=1,...n|di(x) = j}|

Fb-adic[p] = {X’ n|r|—>nc1>o = pj}‘

® Fp_adicl(1/b)] is the set of normal numbers to base b.
: Almost every number is normal.
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b-adic representation

dim ]:b—adic[p] = (:: 9)

log b
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b-adic representation

dim ]:b—adic[p] = (:: 9)

log b

o Construct a measure (i(l4,dp...d,) = PdyPdy - - - Pd,-

n
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b-adic representation

(=:6)

dim Fp_adiclp] =

log b

o Construct a measure (i(l4,dp...d,) = PdyPdy - - - Pd,-

n

1 /
xeF: lim =log 7/;( d...0n (X))
n—oon 7 [lg..d,(x)[°

— —H(p) + s log(b)
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b-adic representation

(=:6)

dim Fp_adiclp] =

log b

o Construct a measure (i(l4,dp...d,) = PdyPdy - - - Pd,-

n

1 /
xeF: lim =log 7/;( d...0n (X))
n—oon 7 [lg..d,(x)[°

— —H(p) + s log(b)

0 s<0:lim oo (B (x))/rr =0=9H°(F) =0
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b-adic representation

: H(p)
dim ]:b—adic[p] = |Ogb (:: 9)
o Construct a measure (i(l4,dp...d,) = PdyPdy - - - Pd,-
°
. (1(ly...d, (%))
xeF: lim floiz—H + slog(b
n——o0 N & ‘Idl...dn(x)‘s (p) g( )
0 s<O:lim o u(Bi(x))/rr=0=9H°(F) =

s> 0 limeoo u(Br(x))/r* = 00 = $° (]—") =0
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A modification of the dyadic representation
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A modification of the dyadic representation

A modification of the dyadic representation

o Represent a real number x € (0,1] by a sequence in N

x =327 (mETn) | ) e N,
i=1
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A modification of the dyadic representation

A modification of the dyadic representation

o Represent a real number x € (0,1] by a sequence in N

x =327 (mETn) | ) e N,
i=1

@ nj(x) is the distance between two digits 1 in the dyadic
expansion.
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A modification of the dyadic representation

A modification of the dyadic representation

o Represent a real number x € (0,1] by a sequence in N

x =327 (mETn) | ) e N,
i=1

@ nj(x) is the distance between two digits 1 in the dyadic
expansion.

@ For A C N consider the set of real numbers Dm.dyadic[A]
with digits in A.
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A modification of the dyadic representation

A modification of the dyadic representation

o Represent a real number x € (0,1] by a sequence in N

x =327 (mETn) | ) e N,
i=1

@ nj(x) is the distance between two digits 1 in the dyadic
expansion.

@ For A C N consider the set of real numbers Dm.dyadic[A]
with digits in A.

° Dm.dyadic[{lﬂz}] = {x|ni(x) =0 = njy1(x) = 1} is called
the golden Markov set.
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A modification of the dyadic representation

The Hausdorff dimension d of D, dyadic[A] is d is given by

d 2=1

i€EA
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A modification of the dyadic representation

The Hausdorff dimension d of D, dyadic[A] is d is given by

d 2=1

i€EA

@ For A={1,...n}: d =log(s)/log(2) where s is given by the
solution s € (1,2) of s" —s"1... —s —1=0.
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A modification of the dyadic representation

The Hausdorff dimension d of D, dyadic[A] is d is given by

d 2=1

i€EA

@ For A={1,...n}: d =log(s)/log(2) where s is given by the
solution s € (1,2) of s" —s"1... —s —1=0.

o For the golden Markov set: d = log((v/5 + 1)/2)/ log2.
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A modification of the dyadic representation

The Hausdorff dimension d of D, dyadic[A] is d is given by

d 2=1

i€EA

@ For A={1,...n}: d =log(s)/log(2) where s is given by the
solution s € (1,2) of s" —s"1... —s —1=0.

o For the golden Markov set: d = log((v/5 + 1)/2)/ log 2.

e For A= {nj|n € N} we have d =1/j.
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A modification of the dyadic representation

The Hausdorff dimension d of D, dyadic[A] is d is given by

d 2=1

i€EA

@ For A={1,...n}: d =log(s)/log(2) where s is given by the
solution s € (1,2) of s" —s"1... —s —1=0.

o For the golden Markov set: d = log((v/5 + 1)/2)/ log 2.

e For A= {nj|n € N} we have d =1/j.

o For A= {nj+ m|n € Ny} d is given by 2=4 4 2=dm — 1.
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A modification of the dyadic representation

Consider the set of real numbers ]:m.dyadic[p] with frequency of
digits given by by a probability vector p with expectation E(p) and
entropy H(p)

Jorg Neunhauserer Dimension theory of representations of numbers



A modification of the dyadic representation

Consider the set of real numbers ]:m.dyadic[p] with frequency of

digits given by by a probability vector p with expectation E(p) and
entropy H(p)

: H(p)
d'mfm.dyadic[p] = E(p) log 2
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A modification of the dyadic representation

Consider the set of real numbers ]:m.dyadic[p] with frequency of

digits given by by a probability vector p with expectation E(p) and
entropy H(p)

: H(p)
d'mfm.dyadic[p] = E(p) log 2

@ For the equidistribution

2log(n)

dim fm_dyadic[(l/nv R 1/”)] = m
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A modification of the dyadic representation

Consider the set of real numbers ]:m.dyadic[p] with frequency of

digits given by by a probability vector p with expectation E(p) and
entropy H(p)

: H(p)
d'mfm.dyadic[p] = E(p) log 2

@ For the equidistribution

2log(n)

dim fm_dyadic[(l/nv R 1/”)] = m

o dim]:m.dyadic[(l/zv 1/4, - .,1/2”, - )] =1
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Continued fraction representation
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Continued fraction representation

Continued fraction representation

@ Represent a real number x € (0,1) by a continued fraction:
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Continued fraction representation

Continued fraction representation

@ Represent a real number x € (0,1) by a continued fraction:

1
1 ’

m(X) + meTs

Ni(x) € N

e Consider the set of numbers Dcon [A] with digits in A.
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Continued fraction representation

Continued fraction representation

@ Represent a real number x € (0,1) by a continued fraction:

1
1 ’

m(X) + meTs

Ni(x) € N

e Consider the set of numbers Dcon [A] with digits in A.

R
8nlogn

4
< di D 1,... <1-
nlog2 — my con.[{ s 7”}] >

for n > 8.
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Continued fraction representation

@ The calculation Dcon.[A] has been addressed over the years:
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Continued fraction representation

@ The calculation Dcon.[A] has been addressed over the years:

@ Today we have an efficient algorithm du to
. Especially:
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Continued fraction representation

@ The calculation Dcon.[A] has been addressed over the years:

@ Today we have an efficient algorithm du to
. Especially:
e dimDcon.[{1,2}] = 0.531280506277 ... (54 digits known)

Jorg Neunhauserer Dimension theory of representations of numbers



Continued fraction representation

@ The calculation Dcon.[A] has been addressed over the years:

Today we have an efficient algorithm du to
. Especially:
dim Dcon. [{1,2}] = 0.531280506277 . .. (54 digits known)
dim Dcon [{1,2,3}] = 0.7046 . ..
dimDcon.[{1,2,3,4}] = 0.7889...
dimDcon [{1,2,3,4,5}] = 0.8368. ..
dimDcon [{1,2,3,4,5,6}] = 0.8676...
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Continued fraction representation

The calculation Dcon.[A] has been addressed over the years:

Today we have an efficient algorithm du to
. Especially:
dim Dcon. [{1,2}] = 0.531280506277 . .. (54 digits known)
dim Dcon [{1,2,3}] = 0.7046 . ..
dimDcon.[{1,2,3,4}] = 0.7889...
dimDcon [{1,2,3,4,5}] = 0.8368. ..
dimDcon [{1,2,3,4,5,6}] = 0.8676...
dim Dcon [{1,3}] = 0.254489077661 . ..
dim Dcon [{2,3}] = 0.337436780806 . . .
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Continued fraction representation

As a corollary of Jarnik's dimension estimate:

dimy{x € (0,1) | (nk(x)) is bounded} =1
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Continued fraction representation

As a corollary of Jarnik's dimension estimate:

dimy{x € (0,1) | (nk(x)) is bounded} =1

dimpy{x € (0,1) | in_}moo(nk(x)) =00} =1/2
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Continued fraction representation

As a corollary of Jarnik's dimension estimate:

dimy{x € (0,1) | (nk(x)) is bounded} =1

dimpy{x € (0,1) | in_}moo(nk(x)) =00} =1/2

dimp{x € (0,1) | ne(x) > a®} = 1/(b+1)
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Continued fraction representation

Complex continued fractions
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Continued fraction representation

Complex continued fractions

@ For z € C consider the Hurwiz continued fraction

1
z=c+ ——7—, ¢ =aj+ bji cZ[i]
C1+z:2i... j =@ T bj
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Continued fraction representation

Complex continued fractions

@ For z € C consider the Hurwiz continued fraction

1
z=c+ ——7—, ¢ =aj+ bji cZ[i]
C1+z:2i... j =@ T bj

e The digits ¢; are given by

zin=1/z—[1/z]=1/z — ¢

with co = [z] and zg = z — ¢p where [.] denotes rounding to
the nearest element of Z[i].
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Continued fraction representation

Complex continued fractions

@ For z € C consider the Hurwiz continued fraction

1
z=c+ ——7—, ¢ =aj+ bji cZ[i]
C1+z:2i... j =@ T bj

e The digits ¢; are given by

zin=1/z—[1/z]=1/z — ¢

with co = [z] and zg = z — ¢p where [.] denotes rounding to
the nearest element of Z[i].

@ For A C N[/] consider the set of Hurwitz continued fractions

DeomlexlAl with digits in A.

Jorg Neunhauserer Dimension theory of representations of numbers



Continued fraction representation

Complex continued fractions

@ For z € C consider the Hurwiz continued fraction

1
z=c+ ——7—, ¢ =aj+ bji cZ[i]
C1+z:2i... j =@ T bj

e The digits ¢; are given by

zin=1/z—[1/z]=1/z — ¢

with co = [z] and zg = z — ¢p where [.] denotes rounding to
the nearest element of Z[i].

@ For A C N[/] consider the set of Hurwitz continued fractions

DeomlexlAl with digits in A.
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Continued fraction representation

Estimating the modulus of the derivative of Tz =1/(z + a + bi)
on the ball By /5(1/2) one proves:

Theorem

d < dim D .5m/exlAl < D

1
2 ey =1

a+bieA

1 d
=1
aJ%:eA(az—i-b2+(1+ﬁ)max{a,b}+1)
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Continued fraction representation

Estimating the modulus of the derivative of Tz =1/(z + a + bi)
on the ball By /5(1/2) one proves:

Theorem

d <dimD [A]< D

comlex

1
2 ey =1

a+bieA

1 d
=1
aJ%:eA(az—i-b2+(1+ﬁ)max{a,b}+1)

0 0.21 < dim Do pmjexl{3 + 7,2 + 4i}] < 0.27
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Continued fraction representation

Estimating the modulus of the derivative of Tz =1/(z + a + bi)
on the ball By /5(1/2) one proves:

Theorem

d < dim D .5m/exlAl < D

1
2 ey =1

a+bieA

1 d
=1
aJ%:eA(az—i-b2+(1+ﬁ)max{a,b}+1)

0 0.21 < dim Do pmjexl{3 + 7,2 + 4i}] < 0.27
® 0.49 < dim Dgpmjexl{2 + 27,3 + 27,2 + 31,3 + 37}] < 0.61
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Continued fraction representation

Estimating the modulus of the derivative of Tz =1/(z + a + bi)
on the ball By /5(1/2) one proves:

Theorem

d < dim D .5m/exlAl < D

1
2 ey =1

a+bieA

1 d
=1
aJ%:eA(az—i-b2+(1+ﬁ)max{a,b}+1)

0 0.21 < dim Doy ey {3 + 1,2 + 4i}] < 0.27
o 0.49 < dim Dy ey {2 + 27,3 4 21,2 + 37,3+ 3i}] < 0.61
o 1 <dimDymlexl{a+ bila,b=1...4}] <1.33
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Continued fraction representation

Deomlex {2 + 2,3 +2i,2 +3i,3 + 3i}]
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Continued fraction representation

Deomlex {2 + 2,3 +2i,2 +3i,3 + 3i}]

D <[{a+bila,b=1...4}]

comle
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Continued logarithm representation
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Continued logarithm representation

Continued logarithm representation

@ Consider the continued logarithm representation to base
m > 3 of x € [0,1]:

x = 1lim logp,(dn(x) + 108 (dn—1(x) +logpm(- - - +logm(di(x)))

n—

with digits in {1,...,m—1}.
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Continued logarithm representation

Continued logarithm representation

@ Consider the continued logarithm representation to base
m > 3 of x € [0,1]:

x = 1lim logp,(dn(x) + 108 (dn—1(x) +logpm(- - - +logm(di(x)))

n—

with digits in {1,...,m—1}.
@ The representation is unique up to a countable set and in
almost all numbers all digits appear.
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Continued logarithm representation

Continued logarithm representation

@ Consider the continued logarithm representation to base
m > 3 of x € [0,1]:

x = lim log,(dn(x)+l0g,,(dn—1(x)+log (- - - +log,,(di(x)))

n—oo

with digits in {1,...,m—1}.
@ The representation is unique up to a countable set and in
almost all numbers all digits appear.

e For m > 4 choosing digits from A C {1,...,m — 1} we define

Dc.log[A] = {x € [0,1]|di(x) € A}.
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Continued logarithm representation
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Continued logarithm representation

Let [(d1, ..., dn)](x) = log,(ds +log,,(dn—1+ - - - + log,(d1 + x).).
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Continued logarithm representation

Let [(d1, ..., dn)](x) = log,(ds +log,,(dn—1+ - - - + log,(d1 + x).).

L, <dimyD [A] < U,

c.log

for all n > 1, where U, and O, are given by

Sl =1 Y [(dl ) =1

di,...,dn€A di,...,d,€EA
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Continued logarithm representation

Let [(d1, ..., dn)](x) = log,(ds +log,,(dn—1+ - - - + log,(d1 + x).).

Ln S dimH DC/Og[A] S Un

for all n > 1, where U, and O, are given by

Sl =1 Y [(dl ) =1

di,...,dn€A di,...,d,€EA

For m = 4 using Mathematica we get
dimy Dc_log[{l, 2} =0.81+0.01

dims De jogl{1,3} = 0.66 + 0.01
dims De jogl{2,3} = 0.45 +0.01
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Continued logarithm representation

0 0.2 0.4 0.6 0.8 il
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Continued logarithm representation

For an arbitrary continued logarithm expansion to base m > 3 we
consider the set of real numbers F¢ jo¢[p] with frequency of digits
given by by a probability vector p.

0 0.2 0.4 0.6 0.8 il
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Continued logarithm representation

For an arbitrary continued logarithm expansion to base m > 3 we
consider the set of real numbers F¢ jo¢[p] with frequency of digits
given by by a probability vector p.

dimy Fc.log[p] <c<l1

for all p (!).

0 0.2 0.4 0.6 0.8 il
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Continued logarithm representation

For an arbitrary continued logarithm expansion to base m > 3 we
consider the set of real numbers F¢ jo¢[p] with frequency of digits
given by by a probability vector p.

dimy Fc.log[p] <c<l1

for all p (!).

For m = 3 the upper bound look as follows

09
08
0.7
0.6
05
04
03
02
0.1

0

0 0.2 0.4 0.6 0.8 il
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Continued logarithm representation

Thanks for Your Attention
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