Dimension theory of representations of real (and complex) numbers

Jörg Neunhäuserer
Leuphana University Lüneburg
joerg.neunhaeuserer@leuphana.de
www.neunhaeuserer.de

• Consider the b-adic representation of a real numbers $x \in [0,1]$:

$$x = \sum_{i=1}^{\infty} d_i(x)b^{-i}, \quad d_i(x) \in \{0, 1, \dots, b-1\}.$$

• Choosing digits from $A \subseteq \{0, \dots, b-1\}$ we define

$$\mathcal{D}_{b-adic}[A] := \{x \in [0,1] | d_i(x) \in A\}.$$

• Consider the b-adic representation of a real numbers $x \in [0,1]$:

$$x = \sum_{i=1}^{\infty} d_i(x)b^{-i}, \quad d_i(x) \in \{0, 1, \dots, b-1\}.$$

• Choosing digits from $A \subseteq \{0, \dots, b-1\}$ we define

$$\mathcal{D}_{\mathsf{b-adic}}[A] := \{ x \in [0,1] | d_i(x) \in A \}.$$

• Consider the b-adic representation of a real numbers $x \in [0,1]$:

$$x = \sum_{i=1}^{\infty} d_i(x)b^{-i}, \quad d_i(x) \in \{0, 1, \dots, b-1\}.$$

ullet Choosing digits from $A\subseteq\{0,\ldots,b-1\}$ we define

$$\mathcal{D}_{\text{b-adic}}[A] := \{x \in [0,1] | d_i(x) \in A\}.$$

• Consider the b-adic representation of a real numbers $x \in [0,1]$:

$$x = \sum_{i=1}^{\infty} d_i(x)b^{-i}, \quad d_i(x) \in \{0, 1, \dots, b-1\}.$$

• Choosing digits from $A \subseteq \{0, \dots, b-1\}$ we define

$$\mathcal{D}_{b-adic}[A] := \{x \in [0,1] | d_i(x) \in A\}.$$

$$\mathfrak{H}^d(B) = \lim_{\epsilon \mapsto 0} \inf \{ \sum_{i=1}^{\infty} \operatorname{diam}(C_i)^d | B \subseteq \bigcup_{i=1}^{\infty} C_i, \ \operatorname{diam}(C_i) < \epsilon \}.$$

- The is a natural generalization of the *n*-dimensional Lebesgue measure to non-integer dimensions, $\mathcal{L}^n = c_n \mathfrak{H}^n$.
- The Hausdorff dimension is given by

$$\dim B = \inf\{d \ge 0 | \mathfrak{H}^d(B) = 0\} = \sup\{d \ge 0 | \mathfrak{H}^d(B) = \infty\}$$

$$\mathfrak{H}^d(B) = \lim_{\epsilon \longmapsto 0} \inf \{ \sum_{i=1}^{\infty} \operatorname{diam}(C_i)^d | B \subseteq \bigcup_{i=1}^{\infty} C_i, \ \operatorname{diam}(C_i) < \epsilon \}.$$

- The is a natural generalization of the *n*-dimensional Lebesgue measure to non-integer dimensions, $\mathcal{L}^n = c_n \mathfrak{H}^n$.
- The Hausdorff dimension is given by

$$\dim B = \inf\{d \ge 0 | \mathfrak{H}^d(B) = 0\} = \sup\{d \ge 0 | \mathfrak{H}^d(B) = \infty\}$$

$$\mathfrak{H}^d(B) = \lim_{\epsilon \longmapsto 0} \inf \{ \sum_{i=1}^{\infty} \operatorname{diam}(C_i)^d | B \subseteq \bigcup_{i=1}^{\infty} C_i, \ \operatorname{diam}(C_i) < \epsilon \}.$$

- The is a natural generalization of the *n*-dimensional Lebesgue measure to non-integer dimensions, $\mathfrak{L}^n = c_n \mathfrak{H}^n$.
- The Hausdorff dimension is given by

$$\dim B = \inf\{d \ge 0 | \mathfrak{H}^d(B) = 0\} = \sup\{d \ge 0 | \mathfrak{H}^d(B) = \infty\}$$

$$\mathfrak{H}^d(B) = \lim_{\epsilon \longmapsto 0} \inf \{ \sum_{i=1}^{\infty} \operatorname{diam}(C_i)^d | B \subseteq \bigcup_{i=1}^{\infty} C_i, \ \operatorname{diam}(C_i) < \epsilon \}.$$

- The is a natural generalization of the *n*-dimensional Lebesgue measure to non-integer dimensions, $\mathfrak{L}^n = c_n \mathfrak{H}^n$.
- The Hausdorff dimension is given by

$$\dim B = \inf\{d \ge 0 | \mathfrak{H}^d(B) = 0\} = \sup\{d \ge 0 | \mathfrak{H}^d(B) = \infty\}$$

Theorem

$$\dim \mathcal{D}_{b-adic}[A] = \frac{\log |A|}{\log b}$$

- For the upper bound just cover the set by by $|A|^n$ intervals of length b^n .
- For the lower bound define a probability measure by $\mu(I_{a_1 a_2 \dots a_n}) = |A|^{-n}$. We have

$$x \in \mathcal{D}: \ \mu(B_r(x)) \le c \ r^{\log|A|/\log b}.$$

Theorem

$$\dim \mathcal{D}_{b\text{-}adic}[A] = \frac{\log |A|}{\log b}$$

- For the upper bound just cover the set by by $|A|^n$ intervals of length b^n .
- For the lower bound define a probability measure by $\mu(I_{a_1a_2...a_n})=|A|^{-n}$. We have

$$x \in \mathcal{D}: \ \mu(B_r(x)) \le c \ r^{\log|A|/\log b}.$$

Theorem

$$\dim \mathcal{D}_{b\text{-}adic}[A] = \frac{\log |A|}{\log b}$$

- For the upper bound just cover the set by by $|A|^n$ intervals of length b^n .
- For the lower bound define a probability measure by $\mu(I_{a_1a_2...a_n})=|A|^{-n}$. We have

$$x \in \mathcal{D}: \ \mu(B_r(x)) \le c \ r^{\log|A|/\log b}.$$

Theorem

$$\dim \mathcal{D}_{b\text{-}adic}[A] = \frac{\log |A|}{\log b}$$

- For the upper bound just cover the set by by $|A|^n$ intervals of length b^n .
- For the lower bound define a probability measure by $\mu(I_{a_1 a_2 \dots a_n}) = |A|^{-n}$. We have

$$x \in \mathcal{D}: \ \mu(B_r(x)) \le c \ r^{\log|A|/\log b}.$$

Theorem

$$\dim \mathcal{D}_{b\text{-}adic}[A] = \frac{\log |A|}{\log b}$$

- For the upper bound just cover the set by by $|A|^n$ intervals of length b^n .
- For the lower bound define a probability measure by $\mu(I_{a_1 a_2 \dots a_n}) = |A|^{-n}$. We have

$$x \in \mathcal{D}$$
: $\mu(B_r(x)) \le c r^{\log |A|/\log b}$.

Theorem

$$\dim \mathcal{D}_{b\text{-}adic}[A] = \frac{\log |A|}{\log b}$$

- For the upper bound just cover the set by by $|A|^n$ intervals of length b^n .
- For the lower bound define a probability measure by $\mu(I_{a_1a_2...a_n}) = |A|^{-n}$. We have

$$x \in \mathcal{D}: \ \mu(B_r(x)) \leq c \ r^{\log|A|/\log b}.$$

• Let $\mathbf{p} = (p_j)$ be a probability vector on $\{0, \dots b-1\}$. The entropy of \mathbf{p} is

$$H(\mathbf{p}) = -\sum_{j=0}^{b-1} p_j \log p_j.$$

 Consider the set of real numbers in [0,1] with given frequency of digits in the b-adic representation

$$\mathcal{F}_{\text{b-adic}}[\mathbf{p}] := \{ x | \lim_{n \to \infty} \frac{|\{i = 1, \dots, n | d_i(x) = j\}|}{n} = p_j \}.$$

• $\mathcal{F}_{b-adic}[(1/b)]$ is the set of normal numbers to base b. Borel (1909): Almost every number is normal.

• Let $\mathbf{p} = (p_j)$ be a probability vector on $\{0, \dots b-1\}$. The entropy of \mathbf{p} is

$$H(\mathbf{p}) = -\sum_{j=0}^{b-1} p_j \log p_j.$$

 Consider the set of real numbers in [0,1] with given frequency of digits in the b-adic representation

$$\mathcal{F}_{b-adic}[\mathbf{p}] := \{x | \lim_{n \to \infty} \frac{|\{i = 1, \dots, n | d_i(x) = j\}|}{n} = p_j\}.$$

• $\mathcal{F}_{b-adic}[(1/b)]$ is the set of normal numbers to base b. Borel (1909): Almost every number is normal.

• Let $\mathbf{p} = (p_j)$ be a probability vector on $\{0, \dots b-1\}$. The entropy of \mathbf{p} is

$$H(\mathbf{p}) = -\sum_{j=0}^{b-1} p_j \log p_j.$$

 Consider the set of real numbers in [0,1] with given frequency of digits in the b-adic representation

$$\mathcal{F}_{\text{b-adic}}[\mathbf{p}] := \{x | \lim_{n \to \infty} \frac{|\{i = 1, \dots n | d_i(x) = j\}|}{n} = p_j\}.$$

• $\mathcal{F}_{b-adic}[(1/b)]$ is the set of normal numbers to base b. Borel (1909): Almost every number is normal.

• Let $\mathbf{p} = (p_j)$ be a probability vector on $\{0, \dots b-1\}$. The entropy of \mathbf{p} is

$$H(\mathbf{p}) = -\sum_{j=0}^{b-1} p_j \log p_j.$$

 Consider the set of real numbers in [0,1] with given frequency of digits in the b-adic representation

$$\mathcal{F}_{\text{b-adic}}[\mathbf{p}] := \{x | \lim_{n \to \infty} \frac{|\{i = 1, \dots n | d_i(x) = j\}|}{n} = p_j\}.$$

• $\mathcal{F}_{\text{b-adic}}[(1/b)]$ is the set of normal numbers to base b. Borel (1909): Almost every number is normal.

Theorem

$$\dim \mathcal{F}_{b\text{-}adic}[\mathbf{p}] = \frac{H(\mathbf{p})}{\log b} \ (=:\theta)$$

• Construct a measure $\mu(I_{d_1d_2...d_n}) = p_{d_1}p_{d_2}...p_{d_n}$.

•

$$x \in \mathcal{F}: \lim_{n \longrightarrow \infty} \frac{1}{n} \log \frac{\mu(I_{d_1...d_n}(x))}{|I_{d_1...d_n}(x)|^s} = -H(\mathbf{p}) + s \log(b)$$

•
$$s < \theta : \lim_{r \to \infty} \mu(B_r(x))/r^s = 0 \Rightarrow \mathfrak{H}^s(\mathcal{F}) = \infty$$

•
$$s > \theta : \lim_{r \to \infty} \mu(B_r(x))/r^s = \infty \Rightarrow \mathfrak{H}^s(\mathcal{F}) = 0$$

Theorem

$$\dim \mathcal{F}_{b\text{-}adic}[\mathbf{p}] = \frac{H(\mathbf{p})}{\log b} \ (=: \theta)$$

• Construct a measure $\mu(I_{d_1d_2...d_n}) = p_{d_1}p_{d_2}...p_{d_n}$.

$$x \in \mathcal{F}: \lim_{n \to \infty} \frac{1}{n} \log \frac{\mu(I_{d_1...d_n}(x))}{|I_{d_1...d_n}(x)|^s} = -H(\mathbf{p}) + s \log(b)$$

•
$$s < \theta : \lim_{r \to \infty} \mu(B_r(x))/r^s = 0 \Rightarrow \mathfrak{H}^s(\mathcal{F}) = \infty$$

•
$$s > \theta$$
: $\lim_{r \to \infty} \mu(B_r(x))/r^s = \infty \Rightarrow \mathfrak{H}^s(\mathcal{F}) = 0$

Theorem

$$\dim \mathcal{F}_{b\text{-}adic}[\mathbf{p}] = \frac{H(\mathbf{p})}{\log b} \ (=: \theta)$$

• Construct a measure $\mu(I_{d_1d_2...d_n}) = p_{d_1}p_{d_2}...p_{d_n}$.

•

$$x \in \mathcal{F}: \lim_{n \longrightarrow \infty} \frac{1}{n} \log \frac{\mu(I_{d_1...d_n}(x))}{|I_{d_1...d_n}(x)|^s} = -H(\mathbf{p}) + s \log(b)$$

•
$$s < \theta : \lim_{r \to \infty} \mu(B_r(x))/r^s = 0 \Rightarrow \mathfrak{H}^s(\mathcal{F}) = \infty$$

•
$$s > \theta : \lim_{r \to \infty} \mu(B_r(x))/r^s = \infty \Rightarrow \mathfrak{H}^s(\mathcal{F}) = 0$$

Theorem

$$\dim \mathcal{F}_{b\text{-}adic}[\mathbf{p}] = \frac{H(\mathbf{p})}{\log b} \ (=: \theta)$$

- Construct a measure $\mu(I_{d_1d_2...d_n}) = p_{d_1}p_{d_2}...p_{d_n}$.
- •

$$x \in \mathcal{F}: \lim_{n \longrightarrow \infty} \frac{1}{n} \log \frac{\mu(I_{d_1...d_n}(x))}{|I_{d_1...d_n}(x)|^s} = -H(\mathbf{p}) + s \log(b)$$

•
$$s < \theta : \lim_{r \to \infty} \mu(B_r(x))/r^s = 0 \Rightarrow \mathfrak{H}^s(\mathcal{F}) = \infty$$

•
$$s > \theta : \lim_{r \to \infty} \mu(B_r(x))/r^s = \infty \Rightarrow \mathfrak{H}^s(\mathcal{F}) = 0$$

Theorem

$$\dim \mathcal{F}_{b\text{-}adic}[\mathbf{p}] = \frac{H(\mathbf{p})}{\log b} \ (=: \theta)$$

- Construct a measure $\mu(I_{d_1d_2...d_n}) = p_{d_1}p_{d_2}...p_{d_n}$.
- •

$$x \in \mathcal{F}: \lim_{n \longrightarrow \infty} \frac{1}{n} \log \frac{\mu(I_{d_1...d_n}(x))}{|I_{d_1...d_n}(x)|^s} = -H(\mathbf{p}) + s \log(b)$$

•
$$s < \theta : \lim_{r \to \infty} \mu(B_r(x))/r^s = 0 \Rightarrow \mathfrak{H}^s(\mathcal{F}) = \infty$$

•
$$s > \theta : \lim_{r \to \infty} \mu(B_r(x))/r^s = \infty \Rightarrow \mathfrak{H}^s(\mathcal{F}) = 0$$

Theorem

$$\dim \mathcal{F}_{b\text{-}adic}[\mathbf{p}] = \frac{H(\mathbf{p})}{\log b} \ (=: \theta)$$

• Construct a measure $\mu(I_{d_1d_2...d_n}) = p_{d_1}p_{d_2}...p_{d_n}$.

•

$$x \in \mathcal{F}: \lim_{n \longrightarrow \infty} \frac{1}{n} \log \frac{\mu(I_{d_1...d_n}(x))}{|I_{d_1...d_n}(x)|^s} = -H(\mathbf{p}) + s \log(b)$$

•
$$s < \theta : \lim_{r \to \infty} \mu(B_r(x))/r^s = 0 \Rightarrow \mathfrak{H}^s(\mathcal{F}) = \infty$$

•
$$s > \theta$$
: $\lim_{r \to \infty} \mu(B_r(x))/r^s = \infty \Rightarrow \mathfrak{H}^s(\mathcal{F}) = 0$

$$x = \sum_{i=1}^{\infty} 2^{-(n_1(x)+\cdots+n_i(x))}, \quad n_i(x) \in \mathbb{N}.$$

- $n_i(x)$ is the distance between two digits 1 in the dyadic expansion.
- For $A \subseteq \mathbb{N}$ consider the set of real numbers $\mathcal{D}_{\text{m.dyadic}}[A]$ with digits in A.
- $\mathcal{D}_{\text{m.dyadic}}[\{1,2\}] = \{x | n_i(x) = 0 \Rightarrow n_{i+1}(x) = 1\}$ is called the golden Markov set.

$$x = \sum_{i=1}^{\infty} 2^{-(n_1(x)+\cdots+n_i(x))}, \quad n_i(x) \in \mathbb{N}.$$

- $n_i(x)$ is the distance between two digits 1 in the dyadic expansion.
- For $A \subseteq \mathbb{N}$ consider the set of real numbers $\mathcal{D}_{\mathsf{m.dyadic}}[A]$ with digits in A.
- $\mathcal{D}_{\text{m.dyadic}}[\{1,2\}] = \{x | n_i(x) = 0 \Rightarrow n_{i+1}(x) = 1\}$ is called the golden Markov set.

$$x = \sum_{i=1}^{\infty} 2^{-(n_1(x)+\cdots+n_i(x))}, \quad n_i(x) \in \mathbb{N}.$$

- $n_i(x)$ is the distance between two digits 1 in the dyadic expansion.
- For $A \subseteq \mathbb{N}$ consider the set of real numbers $\mathcal{D}_{\mathsf{m.dyadic}}[A]$ with digits in A.
- $\mathcal{D}_{\text{m.dyadic}}[\{1,2\}] = \{x | n_i(x) = 0 \Rightarrow n_{i+1}(x) = 1\}$ is called the golden Markov set.

$$x = \sum_{i=1}^{\infty} 2^{-(n_1(x)+\cdots+n_i(x))}, \quad n_i(x) \in \mathbb{N}.$$

- $n_i(x)$ is the distance between two digits 1 in the dyadic expansion.
- For $A \subseteq \mathbb{N}$ consider the set of real numbers $\mathcal{D}_{\mathsf{m.dyadic}}[A]$ with digits in A.
- $\mathcal{D}_{\text{m.dyadic}}[\{1,2\}] = \{x | n_i(x) = 0 \Rightarrow n_{i+1}(x) = 1\}$ is called the golden Markov set.

$$x = \sum_{i=1}^{\infty} 2^{-(n_1(x)+\cdots+n_i(x))}, \quad n_i(x) \in \mathbb{N}.$$

- $n_i(x)$ is the distance between two digits 1 in the dyadic expansion.
- For $A \subseteq \mathbb{N}$ consider the set of real numbers $\mathcal{D}_{\mathsf{m.dyadic}}[A]$ with digits in A.
- $\mathcal{D}_{\mathsf{m.dyadic}}[\{1,2\}] = \{x | n_i(x) = 0 \Rightarrow n_{i+1}(x) = 1\}$ is called the golden Markov set.

$\mathsf{T}\mathsf{heorem}$

$$\sum_{i \in A} 2^{-id} = 1$$

- For $A = \{1, \dots n\}$: $d = \log(s)/\log(2)$ where s is given by the solution $s \in (1, 2)$ of $s^n s^{n-1} \cdots s 1 = 0$.
- For the golden Markov set: $d = \log((\sqrt{5} + 1)/2)/\log 2$.
- For $A = \{nj | n \in \mathbb{N}\}$ we have d = 1/j.
- For $A = \{nj + m | n \in \mathbb{N}_0\}$ d is given by $2^{-dj} + 2^{-dm} = 1$.

$$\sum_{i \in A} 2^{-id} = 1$$

- For $A = \{1, \dots n\}$: $d = \log(s)/\log(2)$ where s is given by the solution $s \in (1, 2)$ of $s^n s^{n-1} \cdots s 1 = 0$.
- For the golden Markov set: $d = \log((\sqrt{5} + 1)/2)/\log 2$.
- For $A = \{nj | n \in \mathbb{N}\}$ we have d = 1/j.
- For $A = \{nj + m | n \in \mathbb{N}_0\}$ d is given by $2^{-dj} + 2^{-dm} = 1$.

$$\sum_{i \in A} 2^{-id} = 1$$

- For $A = \{1, \dots n\}$: $d = \log(s)/\log(2)$ where s is given by the solution $s \in (1, 2)$ of $s^n s^{n-1} \cdots s 1 = 0$.
- For the golden Markov set: $d = \log((\sqrt{5} + 1)/2)/\log 2$.
- For $A = \{nj | n \in \mathbb{N}\}$ we have d = 1/j.
- For $A = \{nj + m | n \in \mathbb{N}_0\}$ d is given by $2^{-dj} + 2^{-dm} = 1$.

$$\sum_{i \in A} 2^{-id} = 1$$

- For $A = \{1, \dots n\}$: $d = \log(s)/\log(2)$ where s is given by the solution $s \in (1, 2)$ of $s^n s^{n-1} \cdots s 1 = 0$.
- For the golden Markov set: $d = \log((\sqrt{5} + 1)/2)/\log 2$.
- For $A = \{nj | n \in \mathbb{N}\}$ we have d = 1/j.
- For $A = \{nj + m | n \in \mathbb{N}_0\}$ d is given by $2^{-dj} + 2^{-dm} = 1$.

$$\sum_{i \in A} 2^{-id} = 1$$

- For $A = \{1, \dots n\}$: $d = \log(s)/\log(2)$ where s is given by the solution $s \in (1, 2)$ of $s^n s^{n-1} \dots s 1 = 0$.
- For the golden Markov set: $d = \log((\sqrt{5} + 1)/2)/\log 2$.
- For $A = \{nj | n \in \mathbb{N}\}$ we have d = 1/j.
- For $A = \{nj + m | n \in \mathbb{N}_0\}$ d is given by $2^{-dj} + 2^{-dm} = 1$.

$$\sum_{i \in A} 2^{-id} = 1$$

- For $A = \{1, \dots n\}$: $d = \log(s)/\log(2)$ where s is given by the solution $s \in (1, 2)$ of $s^n s^{n-1} \dots s 1 = 0$.
- For the golden Markov set: $d = \log((\sqrt{5} + 1)/2)/\log 2$.
- For $A = \{nj | n \in \mathbb{N}\}$ we have d = 1/j.
- For $A = \{nj + m | n \in \mathbb{N}_0\}$ d is given by $2^{-dj} + 2^{-dm} = 1$.

Consider the set of real numbers $\mathcal{F}_{m.dyadic}[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p} with expectation $E(\mathbf{p})$ and entropy $H(\mathbf{p})$

$\mathsf{Theorem}$

$$\dim \mathcal{F}_{m.dyadic}[\mathbf{p}] = \frac{H(\mathbf{p})}{E(\mathbf{p})\log 2}$$

• For the equidistribution

$$\dim \mathcal{F}_{\mathsf{m.dyadic}}[(1/n,\ldots,1/n)] = \frac{2\log(n)}{(n+1)\log(2)}$$

• dim
$$\mathcal{F}_{m,dvadic}[(1/2,1/4,\ldots,1/2^n,\ldots)]=1$$

Consider the set of real numbers $\mathcal{F}_{m.dyadic}[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p} with expectation $E(\mathbf{p})$ and entropy $H(\mathbf{p})$

Theorem

$$\dim \mathcal{F}_{m.dyadic}[\mathbf{p}] = \frac{H(\mathbf{p})}{E(\mathbf{p}) \log 2}$$

• For the equidistribution

$$\dim \mathcal{F}_{\mathsf{m.dyadic}}[(1/n,\ldots,1/n)] = \frac{2\log(n)}{(n+1)\log(2)}$$

• dim
$$\mathcal{F}_{m,dvadic}[(1/2,1/4,\ldots,1/2^n,\ldots)]=1$$

Consider the set of real numbers $\mathcal{F}_{m.dyadic}[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p} with expectation $E(\mathbf{p})$ and entropy $H(\mathbf{p})$

$\mathsf{Theorem}$

$$\dim \mathcal{F}_{m.dyadic}[\mathbf{p}] = \frac{H(\mathbf{p})}{E(\mathbf{p}) \log 2}$$

• For the equidistribution

$$\dim \mathcal{F}_{\mathsf{m.dyadic}}[(1/n,\ldots,1/n)] = \frac{2\log(n)}{(n+1)\log(2)}$$

• dim
$$\mathcal{F}_{\mathsf{m.dyadic}}[(1/2,1/4,\ldots,1/2^n,\ldots)]=1$$

Consider the set of real numbers $\mathcal{F}_{\text{m.dyadic}}[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p} with expectation $E(\mathbf{p})$ and entropy $H(\mathbf{p})$

Theorem

$$\dim \mathcal{F}_{m.dyadic}[\mathbf{p}] = \frac{H(\mathbf{p})}{E(\mathbf{p}) \log 2}$$

• For the equidistribution

$$\dim \mathcal{F}_{\mathsf{m.dyadic}}[(1/n,\ldots,1/n)] = \frac{2\log(n)}{(n+1)\log(2)}$$

• dim $\mathcal{F}_{m,dvadic}[(1/2,1/4,\ldots,1/2^n,\ldots)] = 1$

• Represent a real number $x \in (0,1)$ by a continued fraction:

$$x = \frac{1}{n_1(x) + \frac{1}{n_2(x) + \dots}}, \quad n_{i(x)} \in \mathbb{N}$$

• Consider the set of numbers $\mathcal{D}_{con.}[A]$ with digits in A.

Jarnik (1929):

$\mathsf{Theorem}$

$$1 - \frac{4}{n \log 2} \le \dim_H \mathcal{D}_{con.}[\{1, \dots, n\}] \le 1 - \frac{1}{8n \log n}$$

for n > 8.

• Represent a real number $x \in (0,1)$ by a continued fraction:

$$x = \frac{1}{n_1(x) + \frac{1}{n_2(x) + \dots}}, \quad n_{i(x)} \in \mathbb{N}$$

• Consider the set of numbers $\mathcal{D}_{con.}[A]$ with digits in A.

Jarnik (1929):

Theorem

$$1 - \frac{4}{n \log 2} \le \dim_H \mathcal{D}_{con.}[\{1, \dots, n\}] \le 1 - \frac{1}{8n \log n}$$

for n > 8

• Represent a real number $x \in (0,1)$ by a continued fraction:

$$x = \frac{1}{n_1(x) + \frac{1}{n_2(x) + \dots}}, \quad n_{i(x)} \in \mathbb{N}$$

• Consider the set of numbers $\mathcal{D}_{con.}[A]$ with digits in A.

Jarnik (1929):

$$1 - \frac{4}{n \log 2} \le \dim_H \mathcal{D}_{CON.}[\{1, \dots, n\}] \le 1 - \frac{1}{8n \log n}$$

for n > 8

• Represent a real number $x \in (0,1)$ by a continued fraction:

$$x = \frac{1}{n_1(x) + \frac{1}{n_2(x) + \dots}}, \quad n_{i(x)} \in \mathbb{N}$$

• Consider the set of numbers $\mathcal{D}_{con.}[A]$ with digits in A.

Jarnik (1929):

Theorem

$$1 - \frac{4}{n \log 2} \le \dim_{\mathcal{H}} \mathcal{D}_{con.}[\{1, \dots, n\}] \le 1 - \frac{1}{8n \log n}$$

for n > 8.

- The calculation $\mathcal{D}_{con.}[A]$ has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Jenkinson / Pollicott (2001). Especially:
- dim $\mathcal{D}_{con.}[\{1,2\}] = 0.531280506277...(54 digits known)$
- dim $\mathcal{D}_{con.}[\{1,2,3\}] = 0.7046...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4\}] = 0.7889...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4,5\}] = 0.8368...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4,5,6\}] = 0.8676...$
- dim $\mathcal{D}_{con.}[\{1,3\}] = 0.254489077661...$
- dim $\mathcal{D}_{con.}[\{2,3\}] = 0.337436780806...$

- The calculation $\mathcal{D}_{con.}[A]$ has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Jenkinson / Pollicott (2001). Especially:
- dim $\mathcal{D}_{con}[\{1,2\}] = 0.531280506277...(54 digits known)$
- dim $\mathcal{D}_{con.}[\{1,2,3\}] = 0.7046...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4\}] = 0.7889...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4,5\}] = 0.8368...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4,5,6\}] = 0.8676...$
- dim $\mathcal{D}_{con.}[\{1,3\}] = 0.254489077661...$
- dim $\mathcal{D}_{con.}[\{2,3\}] = 0.337436780806...$

- The calculation $\mathcal{D}_{con.}[A]$ has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Jenkinson / Pollicott (2001). Especially:

```
• dim \mathcal{D}_{con.}[\{1,2\}] = 0.531280506277...(54 digits known)
```

```
• dim \mathcal{D}_{con.}[\{1,2,3\}] = 0.7046...
```

```
• dim \mathcal{D}_{con.}[\{1,2,3,4\}] = 0.7889...
```

```
• \dim \mathcal{D}_{con.}[\{1,2,3,4,5\}] = 0.8368...
```

• dim
$$\mathcal{D}_{con.}[\{1,2,3,4,5,6\}] = 0.8676...$$

• dim
$$\mathcal{D}_{con}$$
, [{1,3}] = 0.254489077661...

• dim
$$\mathcal{D}_{COD}$$
, [{2,3}] = 0.337436780806...

- The calculation $\mathcal{D}_{con.}[A]$ has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Jenkinson / Pollicott (2001). Especially:
- dim $\mathcal{D}_{con.}[\{1,2\}] = 0.531280506277...(54 digits known)$

```
• dim \mathcal{D}_{con.}[\{1,2,3\}] = 0.7046...
```

```
• dim \mathcal{D}_{con.}[\{1,2,3,4\}] = 0.7889...
```

•
$$\dim \mathcal{D}_{con.}[\{1,2,3,4,5\}] = 0.8368...$$

• dim
$$\mathcal{D}_{con.}[\{1,2,3,4,5,6\}] = 0.8676...$$

• dim
$$\mathcal{D}_{con}[\{1,3\}] = 0.254489077661...$$

•
$$\dim \mathcal{D}_{con.}[\{2,3\}] = 0.337436780806...$$

- The calculation $\mathcal{D}_{\text{COn.}}[A]$ has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Jenkinson / Pollicott (2001). Especially:
- dim $\mathcal{D}_{con.}[\{1,2\}] = 0.531280506277...(54 digits known)$
- dim $\mathcal{D}_{con.}[\{1,2,3\}] = 0.7046...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4\}] = 0.7889...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4,5\}] = 0.8368...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4,5,6\}] = 0.8676...$
- dim $\mathcal{D}_{con.}[\{1,3\}] = 0.254489077661...$
- $\dim \mathcal{D}_{con.}[\{2,3\}] = 0.337436780806...$

- The calculation $\mathcal{D}_{\text{COn.}}[A]$ has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Jenkinson / Pollicott (2001). Especially:
- dim $\mathcal{D}_{con.}[\{1,2\}] = 0.531280506277...(54 digits known)$
- dim $\mathcal{D}_{con.}[\{1,2,3\}] = 0.7046...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4\}] = 0.7889...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4,5\}] = 0.8368...$
- dim $\mathcal{D}_{con.}[\{1,2,3,4,5,6\}] = 0.8676...$
- dim $\mathcal{D}_{con.}[\{1,3\}] = 0.254489077661...$
- dim $\mathcal{D}_{con.}[\{2,3\}] = 0.337436780806...$

$$\dim_H \{x \in (0,1) \mid (n_k(x)) \text{ is bounded}\} = 1$$

Good (1941):

Theorem

$$\dim_H \{x \in (0,1) \mid \lim_{k \to \infty} (n_k(x)) = \infty\} = 1/2$$

Luczak (1997):

$$\dim_H \{x \in (0,1) \mid n_k(x) \ge a^{b^k}\} = 1/(b+1)$$

$$\dim_H\{x\in(0,1)\mid(n_k(x))\text{ is bounded}\}=1$$

Good (1941):

$\mathsf{Theorem}$

$$\dim_H \{ x \in (0,1) \mid \lim_{k \to \infty} (n_k(x)) = \infty \} = 1/2$$

Luczak (1997):

$\mathsf{Theorem}$

$$\dim_H\{x \in (0,1) \mid n_k(x) \ge a^{b^k}\} = 1/(b+1)$$

$$\dim_H \{x \in (0,1) \mid (n_k(x)) \text{ is bounded}\} = 1$$

Good (1941):

Theorem

$$\dim_{H} \{x \in (0,1) \mid \lim_{k \to \infty} (n_k(x)) = \infty\} = 1/2$$

Luczak (1997):

$$\dim_H \{x \in (0,1) \mid n_k(x) \ge a^{b^k}\} = 1/(b+1)$$

$$\dim_H \{x \in (0,1) \mid (n_k(x)) \text{ is bounded}\} = 1$$

Good (1941):

Theorem

$$\dim_{H} \{x \in (0,1) \mid \lim_{k \to \infty} (n_k(x)) = \infty\} = 1/2$$

Luczak (1997):

$$\dim_H \{x \in (0,1) \mid n_k(x) \ge a^{b^k}\} = 1/(b+1)$$

• For $z \in \mathbb{C}$ consider the Hurwiz continued fraction

$$z = c_0 + \frac{1}{c_1 + \frac{1}{c_2 + \dots}}, \quad c_j = a_j + b_j i \in \mathbb{Z}[i]$$

• The digits c_j are given by

$$z_{j+1} = 1/z_j - [1/z_j] = 1/z_j - c_j$$

with $c_0 = [z]$ and $z_0 = z - c_0$ where [.] denotes rounding to the nearest element of $\mathbb{Z}[i]$.

• For $z \in \mathbb{C}$ consider the Hurwiz continued fraction

$$z = c_0 + \frac{1}{c_1 + \frac{1}{c_2 + \dots}}, \quad c_j = a_j + b_j i \in \mathbb{Z}[i]$$

• The digits c_j are given by

$$z_{j+1} = 1/z_j - [1/z_j] = 1/z_j - c_j$$

with $c_0 = [z]$ and $z_0 = z - c_0$ where [.] denotes rounding to the nearest element of $\mathbb{Z}[i]$.

• For $z \in \mathbb{C}$ consider the Hurwiz continued fraction

$$z = c_0 + \frac{1}{c_1 + \frac{1}{c_2 + \dots}}, \quad c_j = a_j + b_j i \in \mathbb{Z}[i]$$

• The digits c_j are given by

$$z_{j+1} = 1/z_j - [1/z_j] = 1/z_j - c_j$$

with $c_0 = [z]$ and $z_0 = z - c_0$ where [.] denotes rounding to the nearest element of $\mathbb{Z}[i]$.

• For $z \in \mathbb{C}$ consider the Hurwiz continued fraction

$$z = c_0 + \frac{1}{c_1 + \frac{1}{c_2 + \dots}}, \quad c_j = a_j + b_j i \in \mathbb{Z}[i]$$

• The digits c_j are given by

$$z_{j+1} = 1/z_j - [1/z_j] = 1/z_j - c_j$$

with $c_0 = [z]$ and $z_0 = z - c_0$ where [.] denotes rounding to the nearest element of $\mathbb{Z}[i]$.

• For $z \in \mathbb{C}$ consider the Hurwiz continued fraction

$$z = c_0 + \frac{1}{c_1 + \frac{1}{c_2 + \dots}}, \quad c_j = a_j + b_j i \in \mathbb{Z}[i]$$

• The digits c_j are given by

$$z_{j+1} = 1/z_j - [1/z_j] = 1/z_j - c_j$$

with $c_0 = [z]$ and $z_0 = z - c_0$ where [.] denotes rounding to the nearest element of $\mathbb{Z}[i]$.

$$d < \dim \mathcal{D}_{comlex}[A] < D$$

$$\sum_{a+bi \in A} (\frac{1}{a^2 + b^2})^D = 1$$

$$\sum_{a+bi \in A} (\frac{1}{a^2 + b^2 + (1 + \sqrt{2}) \max\{a, b\} + 1})^d = 1.$$

- $0.21 < \dim \mathcal{D}_{comlex}[\{3+i,2+4i\}] < 0.27$
- $0.49 < \dim \mathcal{D}_{comlex}[\{2+2i, 3+2i, 2+3i, 3+3i\}] < 0.61$
- $1 < \dim \mathcal{D}_{comlex}[\{a + bi | a, b = 1...4\}] < 1.33$

$$\begin{aligned} d &< \dim \mathcal{D}_{comlex}[A] < D \\ &\sum_{a+bi \in A} (\frac{1}{a^2 + b^2})^D = 1 \\ &\sum_{a+bi \in A} (\frac{1}{a^2 + b^2 + (1 + \sqrt{2}) \max\{a, b\} + 1})^d = 1. \end{aligned}$$

- $0.21 < \dim \mathcal{D}_{comlex}[\{3+i,2+4i\}] < 0.27$
- $0.49 < \dim \mathcal{D}_{comlex}[\{2+2i, 3+2i, 2+3i, 3+3i\}] < 0.61$
- $1 < \dim \mathcal{D}_{comlex}[\{a + bi | a, b = 1 \dots 4\}] < 1.33$

$$\begin{aligned} d &< \dim \mathcal{D}_{comlex}[A] < D \\ &\sum_{a+bi \in A} (\frac{1}{a^2 + b^2})^D = 1 \\ &\sum_{a+bi \in A} (\frac{1}{a^2 + b^2 + (1 + \sqrt{2}) \max\{a, b\} + 1})^d = 1. \end{aligned}$$

- $0.21 < \dim \mathcal{D}_{comlex}[\{3+i,2+4i\}] < 0.27$
- $0.49 < \dim \mathcal{D}_{\text{comlex}}[\{2+2i, 3+2i, 2+3i, 3+3i\}] < 0.61$
- $1 < \dim \mathcal{D}_{comlex}[\{a + bi | a, b = 1 \dots 4\}] < 1.33$

$$\begin{aligned} d &< \dim \mathcal{D}_{comlex}[A] < D \\ &\sum_{a+bi \in A} (\frac{1}{a^2 + b^2})^D = 1 \\ &\sum_{a+bi \in A} (\frac{1}{a^2 + b^2 + (1 + \sqrt{2}) \max\{a, b\} + 1})^d = 1. \end{aligned}$$

- $0.21 < \dim \mathcal{D}_{comlex}[\{3+i,2+4i\}] < 0.27$
- $0.49 < \dim \mathcal{D}_{comlex}[\{2+2i, 3+2i, 2+3i, 3+3i\}] < 0.61$
- $1 < \dim \mathcal{D}_{comlex}[\{a + bi | a, b = 1...4\}] < 1.33$

Theorem

$$\sum_{a+bi\in A}(\frac{1}{a^2+b^2})^D=1$$

$$\sum_{a+bi\in A}(\frac{1}{a^2+b^2+(1+\sqrt{2})\max\{a,b\}+1})^d=1.$$

 $d < \dim \mathcal{D}_{comlex}[A] < D$

- $0.21 < \dim \mathcal{D}_{comlex}[\{3+i,2+4i\}] < 0.27$
- $0.49 < \dim \mathcal{D}_{comlex}[\{2+2i, 3+2i, 2+3i, 3+3i\}] < 0.61$
- $1 < \dim \mathcal{D}_{comlex}[\{a + bi | a, b = 1...4\}] < 1.33$

$$\mathcal{D}_{comlex}[\{2+2i,3+2i,2+3i,3+3i\}]$$

$$\mathcal{D}_{\mathsf{comlex}}[\{a+bi|a,b=1\dots 4\}]$$

$$\mathcal{D}_{comlex}[\{2+2i, 3+2i, 2+3i, 3+3i\}]$$

$$\mathcal{D}_{comlex}[\{a+bi|a,b=1\dots 4\}]$$

$$\mathcal{D}_{comlex}[\{2+2i, 3+2i, 2+3i, 3+3i\}]$$

$$\mathcal{D}_{\mathsf{comlex}}[\{a+bi|a,b=1\dots 4\}]$$

• Consider the continued logarithm representation to base $m \ge 3$ of $x \in [0,1]$:

$$x = \lim_{n \to \infty} \log_m(d_n(x) + \log_m(d_{n-1}(x) + \log_m(\dots + \log_m(d_1(x))))$$

with digits in $\{1, \ldots, m-1\}$

- The representation is unique up to a countable set and in almost all numbers all digits appear.
- For $m \ge 4$ choosing digits from $A \subseteq \{1, \dots, m-1\}$ we define

$$\mathcal{D}_{\mathsf{c.log}}[A] := \{ x \in [0,1] | d_i(x) \in A \}.$$

• Consider the continued logarithm representation to base $m \ge 3$ of $x \in [0, 1]$:

$$x = \lim_{n \to \infty} \log_m(d_n(x) + \log_m(d_{n-1}(x) + \log_m(\cdots + \log_m(d_1(x))))$$

with digits in $\{1, \ldots, m-1\}$.

- The representation is unique up to a countable set and in almost all numbers all digits appear.
- For $m \ge 4$ choosing digits from $A \subseteq \{1, \dots, m-1\}$ we define

$$\mathcal{D}_{\mathsf{c.log}}[A] := \{ x \in [0,1] | d_i(x) \in A \}.$$

• Consider the continued logarithm representation to base $m \ge 3$ of $x \in [0, 1]$:

$$x = \lim_{n \to \infty} \log_m(d_n(x) + \log_m(d_{n-1}(x) + \log_m(\cdots + \log_m(d_1(x))))$$

with digits in $\{1, \ldots, m-1\}$.

- The representation is unique up to a countable set and in almost all numbers all digits appear.
- For $m \ge 4$ choosing digits from $A \subseteq \{1, \dots, m-1\}$ we define

$$\mathcal{D}_{\mathsf{c.log}}[A] := \{ x \in [0,1] | d_i(x) \in A \}.$$

• Consider the continued logarithm representation to base $m \ge 3$ of $x \in [0, 1]$:

$$x = \lim_{n \to \infty} \log_m(d_n(x) + \log_m(d_{n-1}(x) + \log_m(\cdots + \log_m(d_1(x))))$$

with digits in $\{1, \ldots, m-1\}$.

- The representation is unique up to a countable set and in almost all numbers all digits appear.
- ullet For $m \geq 4$ choosing digits from $A \subseteq \{1, \ldots, m-1\}$ we define

$$\mathcal{D}_{\mathsf{c.log}}[A] := \{ x \in [0,1] | d_i(x) \in A \}.$$

Let
$$[(d_1, \ldots, d_n)](x) = \log_m(d_n + \log_m(d_{n-1} + \cdots + \log_m(d_1 + x)))$$
.

Theorem

$$L_n \leq \dim_H \mathcal{D}_{c.log}[A] \leq U_n$$

for all $n \geq 1$, where U_n and O_n are given by

$$\sum_{d_1,...,d_n\in A}[(d_k)]'(1)^{U_n}=1 \quad \sum_{d_1,...,d_n\in A}[(d_k)]'(0)^{L_n}=1$$

$$\begin{aligned} \dim_H \mathcal{D}_{\text{C.log}}[\{1,2\} &= 0.81 \pm 0.01 \\ \dim_H \mathcal{D}_{\text{C.log}}[\{1,3\} &= 0.66 \pm 0.01 \\ \dim_H \mathcal{D}_{\text{C.log}}[\{2,3\} &= 0.45 \pm 0.01 \\ \end{aligned}$$

Let
$$[(d_1, \ldots, d_n)](x) = \log_m(d_n + \log_m(d_{n-1} + \cdots + \log_m(d_1 + x)))$$
.

Theorem

$$L_n \leq \dim_H \mathcal{D}_{c.log}[A] \leq U_r$$

for all $n \geq 1$, where U_n and O_n are given by

$$\sum_{d_1,...,d_n\in A}[(d_k)]'(1)^{U_n}=1 \quad \sum_{d_1,...,d_n\in A}[(d_k)]'(0)^{L_n}=1$$

$$\begin{aligned} \dim_H \mathcal{D}_{\text{C.log}}[\{1,2\} &= 0.81 \pm 0.01 \\ \dim_H \mathcal{D}_{\text{C.log}}[\{1,3\} &= 0.66 \pm 0.01 \\ \dim_H \mathcal{D}_{\text{C.log}}[\{2,3\} &= 0.45 \pm 0.01 \\ \end{aligned}$$

Let
$$[(d_1, \ldots, d_n)](x) = \log_m(d_n + \log_m(d_{n-1} + \cdots + \log_m(d_1 + x)))$$
.

Theorem

$$L_n \leq \dim_H \mathcal{D}_{c.log}[A] \leq U_n$$

for all $n \ge 1$, where U_n and O_n are given by

$$\sum_{d_1,...,d_n\in A}[(d_k)]'(1)^{U_n}=1 \quad \sum_{d_1,...,d_n\in A}[(d_k)]'(0)^{L_n}=1$$

$$\begin{aligned} \dim_H \mathcal{D}_{\text{C.log}}[\{1,2\} &= 0.81 \pm 0.03 \\ \dim_H \mathcal{D}_{\text{C.log}}[\{1,3\} &= 0.66 \pm 0.03 \\ \dim_H \mathcal{D}_{\text{C.log}}[\{2,3\} &= 0.45 \pm 0.03 \\ \end{aligned}$$

Let
$$[(d_1, \ldots, d_n)](x) = \log_m(d_n + \log_m(d_{n-1} + \cdots + \log_m(d_1 + x)))$$
.

$\mathsf{Theorem}$

$$L_n \leq \dim_H \mathcal{D}_{c.log}[A] \leq U_n$$

for all $n \ge 1$, where U_n and O_n are given by

$$\sum_{d_1,...,d_n\in A}[(d_k)]'(1)^{U_n}=1 \quad \sum_{d_1,...,d_n\in A}[(d_k)]'(0)^{L_n}=1$$

$$\begin{split} \dim_{H} \mathcal{D}_{\text{C.log}}[\{1,2\} &= 0.81 \pm 0.01 \\ \dim_{H} \mathcal{D}_{\text{C.log}}[\{1,3\} &= 0.66 \pm 0.01 \\ \dim_{H} \mathcal{D}_{\text{C.log}}[\{2,3\} &= 0.45 \pm 0.01 \end{split}$$

Theorem

$$\dim_H \mathcal{F}_{c.log}[\mathbf{p}] \leq c < 1$$

for all **p** (!).

For m = 3 the upper bound look as follows

Theorem
$$\mbox{dim}_{H}\, \mathcal{F}_{c.log}[\mathbf{p}] \leq c < 1$$
 for all \mathbf{p} (!).

For m = 3 the upper bound look as follows

Theorem

$$\dim_H \mathcal{F}_{c.log}[\mathbf{p}] \leq c < 1$$

for all **p** (!).

For m = 3 the upper bound look as follows

Theorem

$$\dim_H \mathcal{F}_{c.log}[\mathbf{p}] \leq c < 1$$

for all \mathbf{p} (!).

For m = 3 the upper bound look as follows

Jörg Neunhäuserer

Thanks for Your Attention

